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Abstract— The non-intentionally doped epitaxially grown 

layer of a PIN photodiode is investigated using C-V 

measurements to obtain its doping profile. The non-

intentionally doped layer of In0.53Ga0.47As, epitaxially grown, , 

on a n+ layer of the same material showed values  around ~1016 

cm-3  close to its top and ~1017 cm-3 still above the lower ¼ of 

the layer, suggesting a significant doping segregation from the 

n+ bottom layer. 

Keywords—Doping profile, segregation, epitaxial growth, C-

V measurements 

I. INTRODUCTION  

The realization of atomically standardized and abrupt 
layers is a matter of great concern for the semiconductor 
field, but, though advances in Crystal growth techniques, 
such as molecular beam epitaxy (MBE) and metal-organic 
vapor phase epitaxy (MOVPE), have obtained high-quality 
films, some physical limitations, such as diffusion and 
segregation, have kept one from completely reaching this 
goal. In the MOVPE growth of III-V compound 
semiconductors, for example, it has been reported a 
considerable amount of Al atoms segregation to the surface 
of InGaAs/AlGaAs layers, other study related the 
segregation of Sb to surface of n InAs/InAs1−xSbx layers. This 
segregation of III-V compounds limits abrupt interface 
attainment. [1-6] 

The growth of non-intentionally doped (NID) layers over 
heavily doped layers can also be affected by a segregation of 
dopants from heavily doped layer to NID layer, this 
migration of dopants can be described by an exponential 
decay as a function of position, as discussed in the literature, 
[7-12] although this NID layer may have some residual 
doping concentration even without any segregation. For 
example, InP and InGaAs NID layers are found to have n 
type residual doping concentrations of order of 10

15
 to 10

16 

cm
-3

. [13-15] Dopant impurities can be transferred from the 
heavily doped base layer to the growing NID layer or be 
diffused from the also heavily doped top layer (although it is 
a smaller effect), impacting, for example, a PIN photodiode 
absorbing layer, that should be non-intentional doped (NID), 
reducing its quantum efficiency. [16] 

There are several techniques for the investigation of 
doping profile in an epitaxial layer, among them: spreading 
resistance method (SRM), capacitance-voltage methods, 
secondary ion mass spectrometry (SIMS), neutron activation 
analysis (NAA), etc., whether they are destructive or non-
destructive. [17] Here, the investigation of the doping profile 
of the NID layer of a PIN photodiode is done via a 
capacitance-voltage measurement (C-V) technique. This 
non-destructive technique allows obtaining the active 
impurities in the absorbing layer of the photodiodes using the 
theory of Hilibrand and Gold. [18, 19] 

II. EXPERIMENTAL DETAILS 

Lattice-matched In0.53Ga0.47As/InP PIN photodiodes were 
grown by metalorganic vapor phase epitaxy (MOVPE). The 
structure consists of a 200 nm top In0.53Ga0.47As layer with a 
Zn doping density of 1.5 × 10

19
cm

−3
 (p-region) followed by a 

2.0 µm NID (non-intentionally doped) In0.53Ga0.47As 
absorption layer (I-region) on a 600 nm In0.53Ga0.47As  layer 
with a Si doping density of 2 × 10

18
 cm

−3
 (n-region) over a 

semi insulating (Fe doped) InP substrate.  

A schematic picture of the structure can be seen in Fig 1. 
The devices were processed into mesa structure, using 
standards photolithography techniques with wet etching, 
where all devices are on the same substrate and share the 
same epitaxically grown layers, being replicas of the same 
photodiode. 

 

Fig. 1. Schematic of the PIN photodiode mesa structure. 
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For the characterization, a B1500 parameter analyzer 
from Keysight was used and the contacts in the sample were 
performed using a probe-station CCR10-2 (4TX-2) from 
Janis Research CO. Inc. The polarization was done taking 
the bottom contact as ground, ramping the reverse voltage 
from 0V to 25V and decreasing reverse bias from 25V to 0V, 
in C-V measurements. This bias range was enough to probe 
near half of the nominal absorber layer width. 

III. RESULTS AND DISCUSSION 

A typical C-V data measured is shown in fig. 2. From 
this data the doping profile of the absorbing layer can be 
obtained. [18] 

 According to the basic literature, the junction capacitance 
decreases with the inverse of square root of reverse bias, 
when the layers are uniformly doped, and the depletion 
region is mainly in the less doped side, when one side is 
much more doped than the other. [20] In the present work, 
the p

+
 layer is much more doped than the NID layer, each has 

a n type residual doping. To calculate the variation of the 
depletion region width (W), we use equation 1, which is 
valid even for the non-uniformly doped case. [21] 

𝑊 =  
𝜀𝑟𝜀0𝐴

𝐶
    (1) 

where, 𝜀𝑟  is relative permittivity of the material, 𝜀0  is 
permittivity of vacuum, A is area of device and C is the 
differential capacitance. 

 For computing the depletion region width, three curves of 
the inverse of square root of reverse bias were fitted to the 
data, each one covering a region of the graph in fig. 2, the 
first fit from 0 V to 3 V range, the second fit from 2 V to 11 
V range, and the third fit from 10 V to 25 V range, in order 
to smooth the noise seen in the capacitance data, then 
depletion region is estimated using the first fit from the range 
0 V to 2.10 V, the second fit from the range 2.13 V to 10.08 
V, and the third fit from the range 10.11 V to 25 V (there is 
an intersection between adjacent fitting ranges, to avoid 
fitting border effects). The graph of depletion as a function of 
the reverse voltage is shown in fig. 3. 

 If the plot of the fig. 3 followed a square root dependency 
(uniformly doped layer), the plot of the inverse of the square 
of the capacitance (proportional to the square of the depletion 
width) would be a straight line. Such plot is shown in fig. 4, 
presenting a clearly non-linear curve. 

 

Fig. 2. A typical C-V data from one of the PIN photodiodes. 
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Fig. 3. Graph of the depletion width as a function of the reverse voltage of 
one of the PIN photodiodes.  

 From the graph in fig. 4, the doping level at the depletion 
region limit in the light doped layer can be obtained, using 
equation 2. [17, 20]  

 𝑁 =
2

𝑞𝜀𝑟𝜀0𝐴2

1

𝑑(
1

𝐶2)

𝑑𝑉𝑟

;                  (2) 

where N is the doping concentration, q is elementary charge, 
𝜀𝑟 the relative permittivity of the material, 𝜀0 is permittivity 
of vacuum, A the sample area, C is the differential 
capacitance and Vr is the reverse bias. 

 The derivative of the curve in fig. 4, which is needed in 
equation 2, was obtained making 3 quadratic fits distributed 
by region on the curve, the first fit from 0 V to 7 V range, the 
second fit from 3 V to 12 V range, and the third fit from 6.5 
V to 25 V range. It was needed because a single fit would not 
fit well the whole curve. After performing these quadratic 
fits and obtained the corresponding equations, the derivate 
was calculated for the first fit and used in equation 2 to 
obtain the doping concentration in the range 0 V to 5.08 V, 
the derivate of second fit was used in range of 5.10 V to 9.50 
V, and the derivate of third fit was used in range of 9.53 V to 
25 V (there is an intersection between adjacent fitting ranges, 
to avoid fitting border effects).  

 

Fig. 4. Graph of the inverse of the square of capacitance as a function of 

reverse voltage of  one of the PIN photodiodes. 
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Fig. 5. Graph of the doping profile of the NID layer of one of the PIN 

photodiodes. 

 The doping concentration obtained, for one of the 
devices, as a function of depletion layer width, is plotted on 
fig. 5. It is the doping concentration at a depletion region 
width from the topo of the NID layer. 

 In fig. 5, a n type doping concentration ranging from a 
value close to the expected for the residual doping of a NID 
layer, to a value near one order of magnitude higher can be 
seen. It was not possible to reach the bottom of the NID layer 
(2 µm) due avalanche current. The increase in doping 
concentration from the top to the bottom of the NID layer 
suggests a significant doping segregation. In fig. 6, it is 
shown that the behavior is similar when other devices on the 
same sample piece (same substrate, same epitaxial layers and 
same microfabrication process) are measured, as expected. 

      As seen in figs. 5 and 6, the increase on doping 
concentration suggests a doping segregation coming from 
the bottom heavily doped layer to the NID layer. A way of 
expressing the segregation is by a segregation length, which 
can be obtained by an exponential fit to the curves, 
obtaining segregation coefficients of 1.12 ± 0,03 nm for 
device 1, 1.20 ± 0,02 nm for device 2 and 1.14  ± 0,02 nm 
for device 3. Compared to other segregation lengths 
obtained in the literature they are in the same order of 
magnitude, ranging from 2.4 nm to 5 nm. [7, 10] 
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Fig. 6. Graph of doping profile of the NID layer of 3 photodiodes on the 
same sample. 

 

 Although a diffusion length of the same order of 

magnitude of the ones reported in the literature were found, 

the fit of a S curve (equação 3) gives doping concentration 

to the bottom n
+
 layer significantly larger than the nominal 

of 2 x 10
18

 cm
-3

. It needs to be futher investigated, other 

dopping mechanisms mignt be taking effect, giving an 

effective doping profile that follows a different function. 

 

𝑆 = 𝑦𝑜 + 
𝑁𝑛+

1+𝑒−𝑘(𝑥−𝑥𝑜) 
;                  (2) 

where Nn+ is the doping concentration to the bottom n
+
 layer, 

yo is residual doping, k is the inverse of segregation 
coefficient, xo is the interface point between NID layer and 
the bottom layer N

+
. 

CONCLUSION 

The Investigation of the doping profile of a non-
intentionally doped layer of In0.53Ga0.47As, epitaxially grown 
on a n

+
 layer of the same material was obtained using C-V 

measurements. The data showed an increasing concentration 
from top to down ranging from ~10

16
 cm

-3
, close to the top of 

the NID layer, to ~10
17

 cm
-3

 at a depth of ~1.1 µm. Since the 
NID layer is expected to have a width of 2 µm, the data 
suggests a doping segregation from the n

+
 bottom layer, with 

segregation length in the range of 1.12 nm to 1.20  nm, at the 
same order of magnitude presented in the literature (2.4 nm 
to 5 nm). The doping concentration obtained close to the top 
of the NID layer showed a value around what can be 
expected for the residual doping of such layer, according to 
what was found in the literature (10

15
 to 10

16
 cm

-3
). [13-15]  
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